在群晖上安装运行Airflow
不知道是什么用,主要是甲骨文占用资源,防ban号。
什么是 Airflow ?
Apache Airflow
是一个开源平台,用于开发、调度和监控面向批处理的工作流。Airflow
的可扩展Python
框架使您能够构建与几乎任何技术连接的工作流。Web
界面有助于管理工作流程的状态。Airflow
可以通过多种方式进行部署,从笔记本电脑上的单个进程到分布式设置,以支持最大的工作流。当工作流被定义为代码时,它们变得更易于维护、可版本化、可测试和协作。
注意事项
如果你没有足够的内存,将会导致 Ariflow WebServer
不断的重启。官方文档要求应该至少分配4G
的内存(推荐8G
)
官方推荐了下面的命令,检查是否有足够的内存,这应该是给 vps
用的,群晖用不上,信息中心里能查到内存信息
1
2# 检查可用内存
docker run --rm "debian:buster-slim" bash -c 'numfmt --to iec $(echo $(($(getconf _PHYS_PAGES) * $(getconf PAGE_SIZE))))'
618
虽然没买硬盘,但是还是买了根 DDR3
的内存条
安装
在群晖上以 Docker 方式安装。
apache/airflow
的latest
版本对应为2.6.1
需用到 3
个镜像,生成 7
个容器,所以采用 docker-compose
方式安装
安装过程主要参考了官方的文档:https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html
建目录
用 SSH
客户端登录到群晖,在命令行中依次执行下面的命令
1
2
3
4
5# 新建文件夹 airflow 和 子目录
mkdir -p /volume1/docker/airflow/{config,dags,data,logs,plugins}
# 进入 airflow 目录
cd /volume1/docker/airflow
docker-compose.yml
下面的内容基于官方 docker-compose.yml
修改而成,源文件地址:https://airflow.apache.org/docs/apache-airflow/2.6.1/docker-compose.yaml
你可以用官方的文档自己改,也可以直接保存下面老苏已经修改过的内容
为了节省篇幅,这里贴出来的去掉了注释,未注释的版本放在了 https://github.com/wbsu2003/synology/tree/main/Airflow
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236version: '3.8'
x-airflow-common:
&airflow-common
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.6.1}
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
# For backward compatibility, with Airflow <2.3
AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'true'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session'
AIRFLOW__SCHEDULER__ENABLE_HEALTH_CHECK: 'true'
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
volumes:
- ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
- ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
- ${AIRFLOW_PROJ_DIR:-.}/config:/opt/airflow/config
- ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:14
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- ./data:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 10s
retries: 5
start_period: 5s
restart: always
redis:
image: redis:6.2
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 10s
timeout: 30s
retries: 50
start_period: 30s
restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- "8080:8080"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_started
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8974/health"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_started
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
test:
- "CMD-SHELL"
- 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
environment:
<<: *airflow-common-env
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_started
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_started
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
command:
- -c
- |
function ver() {
printf "%04d%04d%04d%04d" $${1//./ }
}
airflow_version=$$(AIRFLOW__LOGGING__LOGGING_LEVEL=INFO && gosu airflow airflow version)
airflow_version_comparable=$$(ver $${airflow_version})
min_airflow_version=2.2.0
min_airflow_version_comparable=$$(ver $${min_airflow_version})
if (( airflow_version_comparable < min_airflow_version_comparable )); then
echo
echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
echo
exit 1
fi
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
environment:
<<: *airflow-common-env
_AIRFLOW_DB_UPGRADE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- ${AIRFLOW_PROJ_DIR:-.}:/sources
healthcheck:
test: ["CMD-SHELL", "[ -f /opt/airflow/airflow-initialized ]"]
interval: 5s
retries: 50
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
command:
- bash
- -c
- airflow
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- "5555:5555"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_started
主要修改了两处:
1、把数据库做了持久化处理,映射到了本机的目录,而不是卷;
2、将 service_completed_successfully
改为目前 docker-compose
版本支持的 service_healthy
当然你想升级 docker-compose
也是可以的,在 在群晖上体验维格表社区版APITable 一文中,老苏介绍过升级的方法,但并不建议,因为不知道是否会给群晖带来隐患
将 docker-compose.yml
放入当前目录即可
.env
官方是用的👇下面获取的
1
2# 生成 .env 文件
echo -e "AIRFLOW_UID=$(id -u)" > .env
老苏建议直接用 1000
,因为 uid 1000
是 Debian
、Ubuntu
、Alpine linux
上的默认主要用户,但在 CentOS
或 RHEL
上则不是
1
echo -e "AIRFLOW_UID=1000" > .env
现在的目录中应该是这样的
启动
首先我们要初始化数据库
1
2# 初始化数据库
docker-compose up airflow-init
执行完成后,会自动退出的,接下来就可以一键启动了
1
2# 一键启动
docker-compose up -d
如果不出意外的,应该是这个样子的
除了 airflow-init
外,另外 6
个镜像都是正常运行状态
运行
在浏览器中输入 http://群晖IP:8080
就能看到登录界面
缺省用户:
airflow
密码:airflow
如何使用,老苏就不会了,去看文档吧:https://airflow.apache.org/docs/apache-airflow/stable/tutorial/index.html
参考文档
apache/airflow: Apache Airflow - A platform to programmatically author, schedule, and monitor workflows
地址:https://github.com/apache/airflowInstallation — Airflow Documentation
地址:https://airflow.apache.org/docs/apache-airflow/stable/installation/index.html#using-production-docker-imagesRunning Airflow in Docker — Airflow Documentation
地址:https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.htmlDocker Image for Apache Airflow — docker-stack Documentation
地址:https://airflow.apache.org/docs/docker-stack/index.html